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Abstract

It is well known that M- channel filter banks, satisfying either the peirfect-reconstruction (PR) or near-PR propertys

can be obtained by cosine modulation of a linear-phase prototype filter. In this work, we investigated the effects of choosing odd or even

number of channels on the performance of both PR and near-PR cosine-modulated filter banks (CMFBs). Given the same m, a perfor

mance degradation happens in the PR case with odd numbered M. Contrarily, the choice of even or odd M has little effects on the whole

system quality for near-PR one. In additions we made some comparisons between the constrained optimization and the Parks-M cClellan al

gorithm with cosine rolboff characteristic in designing near PR CMFBs. Detailed analyses and numerical comparisons show that the PR

and near-PR systems have their individual characteristics in terms of M and m selection. Studies here can provide useful and practical

guidelines for choosing right filter systems.

Keywords:

Digital filter banks are widely used in a number
of signal processing applications, such as subband
coders for speech signals, frequency domain speech
scramblers, and image (:oding[l"2] . Fig. 1 shows a
typical structure of M-channel maximally decimated
filter banks. Among the proposed filter banks, the
cosine modulated filter bank (CMFB) is of particular
interest due to its low design cost and low implemen-
tation complexity, resulting from the fact that all
analy sis and synthesis filters in the CM FB are gener-
ated by cosine modulation of a linear phase low pass
prototy pe filter. Two types of CM FBs have been de-
veloped so far, gseudo-quadrature mirror filter
(QMF) systemd >~ and perfect reconstruction (PR)

systemd " ',

The former possesses an efficient de-
sign procedure, and the latter achieves perfect recon-
struction of the input signal, without aliasing, ampli-
tude and phase distortions. Owing to these attractive
features the PR filter banks have received much at-
tention. However, the conventional approaches to the
design of PR CM FBs require a complicated nonlinear
constrained optimization procedure. Moreover, the
filter length is generally constrained to be 2mM,
where M is the number of channels and m is a posi-
tive integer. Unlike a PR system, a pseudo-QMF
bank, being only approximately free of alias and am-
plitude distortion, but exactly free of phase distor-

cosine modulated filter banks, perfect reconstruction (PR), the Parks McClellan algorithm.

tion, is of near-PR property.

@)
L

Fig. 1. The structure of M-channel maximally decimated filter
banks.

In this paper, we focus on the analysis of the ef-
fects of the numbers of channels M on the perfor-
mance of both PR and near-PR CMFBs to provide a
useful guideline for choosing PR or near-PR systems
with the appropriate parameters. More specifically,
we are interested in discovering how the selection of
even or odd numbered M will affect the filter perfor-
mance. It has been found that in the PR CMFB, if
M is odd,
forced to be pure delays so that there are 2(m— 1)

two of the polyphase components are

zeros contained in the coefficients of prototype filter.
It is these zeros that affect the quality of the proto-
ty pe filter. The larger m is, the more zeros the pro-
totype filter has, and the more difficult the nonlinear
in the near-PR
CMFB, there are no effects of odd and even num-

optimization becomes. However,

bered M on the performance of the prototype filter.
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In addition, we made some com parisons between the
constrained optimization and the Parks-McClellan al-
gorithm with cosine roll-off characteristic in designing
nearPR CMFBs. It is found that by employing the
ParksM cClellan algorithm, the CMFB will have

much higher stopband attenuation with less design ef-
fort.

1 Basic principle of cosine-modulated filter
banks

In this section, we briefly introduce the principle
of near-PR and PR filter banks constructed by using
cosine modulation.

1.1 Near-PR cosine-modulated filter banks

In the CMFBs, the analysis filters Hy(z ) and
synthesis filters Fx (z) are obtained by using the co-

sine modulation of a real coefficient linearphase low -
N—1

pass prototype filter H(z ) = Z hinz "
n=0
he(n)=2h(n)
°© T[_ 7N71 - kl
cos[(2k+l)2M[n T ]Jr( D 4],
fk(n):2h(n)
° cos (2k+1)ﬁ[n—N—1]_ —l)k%],

2
Osn<N—1L O0skssM—1. (D
where i (n) and fi (n) are the impulse responses of
Hi(z) and Fi(z), respectively; N is the length of
the prototype filter. From (1), we can verify that

the analysis and synthesis filters are related by

fi(n)=mn(N—1—n) and

F.(z)= zi(]wl)Hk(zil). @)
Therefore, the output of the system shown in Fig. 1

can be expressed in terms of the input as

M—1
X(2) = X T+ 20X CWhod, ),
=1

dlias terms

3

D IH (2F, (z)

1
M
- LEZi(Nil)Hk(Z)Hk(Zilx
M
1 !

M Hk<ZWM)Fk(Z>9

2

M7

I<I<M—1 O0<k<M—1I. 4)
It can be seen from (4) that T(z), the overall trans-
fer function of the analysis / synthesis system, has
linear phase. And the term X(z Wi ) is a shifted ver-
sion of X (z) for all /. We refer to the terms
X(z WJM) and 4;(z), 1<ISKM —1, as alias com-

ponents and the alias transfer functions respectively.

Based on the known near-PR filter bank design
techniques, it is possible to obtain designs such that
the aliasing error and the reconstruction error of the
system can be made very small. In this case, the
overall transfer function 7 (z) has approximately unit
gain at all frequencies.

1.2 PR cosine-modulated filter banks

Let h(z2)=[ Hy(z) H\(z) - Hy,(z)] " be
the analysis filters obtained by cosine modulation of
the prototype filter H (z). Using type I polyphase

[2]

decomposition' ™, h(z) can be expressed as

hz)=EGen(z), (5)

where E (z) is the polyphase component matrix of
the analysis filters and e][w (z)=11 z !
—(M—D
z
From Ref. [ 7], weknow that, for any PR filter
banks, if the analysis and synthesis filters are related
by (2), then E(z) is necessarily lossless. Converse-

ly, if the matrix E (z ) satisfies E (z) E (z )= I
where E(z)=E"%“(z '),

denoting transposition and subscript

Yz, with superscript T
* the conjuga-
tion of coefficients, then the filter bank will possess
the PR property. In Ref. [ 8], the condition on
E(z) being lossless is given, where the length of the
filter is constrained to be 2mM with m being any
positive integer. It has been shown that E(z) is loss-
less if and only if
Gi(2)G )T G (2) G (2) = 1/2 M,
O< k< M—1, 6)
where G (z ) are the type T poly phase com ponents of

H(z)and Gi(z)=Gi+(z D).

With the analysis and synthesis filters obtained
by using cosine modulation shown in (1), we just im-
pose the PR constraints (6) on the prototype filter
H(z), which is a real coefficient linear phase FIR
low pass filter with cutoff frequency m/2M. The
problem of designing the filter bank is formulated as
solving the following constrained optimization problem
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min @ = Jw- | HE") Pdo D

subjected to the PR constraints in (6). The value of
the stopband cut-off frequency w, depends on the de-
sired transition bandwidth and should be betw een /
2M and ©/ M. This nonlinear constrained optimiza-
tion process can be performed using fmincon function

available in MATLAB.

2 Analysis of PR cosine-modulated filter
banks with odd and even numbers of channels

From the above description, we can see that the
CMFB system can achieve perfect reconstruction by
constraining the polyphase components of the proto-
type filter as in (6). However, the length of the fil-
ter should be fixed to be 2mM. Moreover, when M
is odd, there are two components being forced to be
pure delays, affecting the performance of the proto-
type filter. The larger m is, the worse the filter
quality is. Next, we will give the detailed analysis on
this problem.

To begin with, we consider the polyphase com-
ponents. Due to the linear phase property of the pro-
totype filter H(z), we have

Gk(Z) — Zi(mil)GzAMka(Z),

Ok M—1. (8
Therefore, almost half of the M constraints given in
(6) are redundant. Removing these redundancies,
(6) can be expressed as

Gi(2)G (z2)T G (2) Gapry (2) = 1/2M,
0< k<< M/2— 1, foreven M, (9a)

Gi(z2) G (z)+ Guei(2) Gk (2) = 1/2M,

0<<hk<|{M/2,—1,
2G (=122 ) Gap—ny2(z) = 1/2 M,

k= (M—1)/2, forodd M. ©Oh)
The total number of independent constraints is | M/ 2 .
From (9), an important observation is obtained: for

odd M, the polyphase components G(3—1),,(z) and
G+ =1y 2(2) are forced to be pure delays, which

would degrade the performance of the prototype filter
significantly .

To prove the claim above, we will give two nu-
merical examples with even and odd numbers of chan-
nels. Before doing that, we need to define the follow-

ing two quantities to measure the PR property of the
filter banks.

1) The peak-to-peak reconstruction error Epp:

The maximum peak to peak ripple of M| T "),
denoted by E| . is usually taken to be a measure of

worst possible amplitude distortion.

2) The aliasing ewor E,: E,= max E (w),

= Y /2

where E(w) = [2 |A1(eJ ) ‘2] . It is a mea-
=

sure of the worst possible peak aliasing distortion.

As a general rule, if the values of E,, and E, are
in the order of 10 or below. we consider the corre-
sponding filter bank to be a near-PR one; on the oth-
er hand, if both values are in the order of 10 % or

below, we classify the filter bank as a PR one.

Example with even M. In this example, we
choose M=4, m=13, and N=2mM= 104. And
we set the cut-off frequency w,=n/2M. Following
Eq. (7) under the constraints (6), we obtain the
prototype filter 2 (n ) by using fmincon function in
MATLAB and a set of the analysis and synthesis fil-
ters by applying Eq. (1). Fig. 2 shows the frequen-
cy responses of the analysis filters of this 4-channel
filter bank. E,, and Eaare also shown in this figure.

They are approximately in the order of 10 ' and
10 '®, respectively, being considerably below the or-
derof 10 '*to satisfy the PR requirement. The stop-
band attenuation 4is 82.1 dB.
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Example with odd M: For the purposes of com-
parison, we give the example with odd number of
channels. Here, we consider the case that M =5,
m=13, N=2mM=130, and w.=n/2M. Follow-
ing the same procedure as the above, we got the anal-
ysis filters of the 5-channel filter bank. Fig. 3 shows
the frequency responses of the analysis filters as well

as E,,

and E,, which are approximately in the order
of 10 “and 10 °, respectively, again being signifi-
cantly below the order of 10 2 The stopband atten-
uation As is only 41.41 dB, which is about 40 dB
worse than that of the 4-channel case while having al-
most the same E, or E,. These values are listed in

Table 1.

x 107" x 10
5 2
(b) (©
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Q 5 3 |
g z °
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g < =~
& 1
5
-
-4 .. =1
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Normalized frequency (o / 2) Normalized frequency (/ 2m) Normalized frequency (@ / 2m)
Fig. 3. A 5channel PR CMFB. (a) Magnitude responses of the amalysis filters; (b) aliasing error (¢) amplitude distortion.

Table 1.  Comparson between the odd/ even M in PR case
(m=13, o=n/2M)

Number of A,(dB) Reconstiction Aliasing error (E,)
channels error (Ew)
M=4  8.10 3.997x10 ° 7.202x 10 '
M=5 41.41  2.554< 10 * 4.545X10 B

This performance degradation phenomenon can
be easily explained based on our analysis. As men-
tioned above, in the case that M is odd, the poly-
phase components Gy—1,2 (z) and Gurp—1y2 (2)
have to be pure delay elements to maintain the PR
property . There would be 2(m — 1) zero coefficients
of the prototype filter. This reduces the degree of the
freedom in the optimization, and hence affects the
quality of the prototype filter. It is obvious that the
larger m is, the more zero coefficients the prototy pe
filter has, and the more difficult the nonlinear opti-
Therefore, when M is odd, a
small m should be chosen. It can be expected that
good performance of the filter bank with odd M can
be obtained when M is large and m is small.

mization becomes.

3 Analysis of near-PR filter banks and their
design approaches

Compared with PR filter banks, the difference of
near-PR filter banks with odd or even M is not so ob-
vious. In this section, we will address this phe-
nomenon by giving examples in detail. In addition,
two different methods with the constrained optimiza-

tion and the Parks-McClellan algorithm for designing

the near-PR CM FBs will be compared.

3.1 NearPR filter banks with odd and even num-
bers of channels

There are many methods available for the design
of near-PR filter banks. The design is usually per-
formed by using the nonlinear optimization with the
relaxed PR constraints. Since optimization procedures
are in general computationally intensive and the con-
verging rate tow ards optimum solution is rather slow,
we employ the Parks-McClellan algorithm with cosine
roll-off characteristic in constructing the prototype fil-

ter. An ideal magnitude response can be achieved

without nonlinear optimization'” .

Based on the characteristics of the CMFB, there
is no phase distortion and no significant aliasing error
in the filter bank system. The only remaining issue is
to reduce amplitude distortion. It is known that there
would be no amplitude distortion arising if | T
is kept to be flat. In designing near-PR filter banks
the prototype filter H(z) should be designed in such
a way that | T is acceptably flat. If we guaran-
tee that the stopband attenuation of Hy(z ) is suffi-
ciently high, then | T (™) will be nearly as flat as
the magnitude response of each filter H; (z ) in the
region with o allocated at the passbands of all
H. (z).

scribed above, it is sufficient to impose the following

Therefore, to meet the requirements de-

constraint on, the prototype filter, H(z);
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jlo—n/ M)

| HE) P+ HGE y P=1,

0<< o< m/ M. ao

It is found that if the response of H(z) follows a
then the filter
bank is approximately power complementary and

cosine function in its transition band,

hence has the near-PR property. For simplicity, we
use the Parks-M cClellan algorithm with cosine roll-off
characteristic in designing the prototy pe filter, and an
ideal magnitude response can be achieved. This is
performed by using remez (or firpm ) function in

MATLAB.

In section 2, we have seen the effect with even

or odd number of channels on the performance of the

PR CM FBs. In this section, we will show the effect
on that of the near-PR CMFBs by using the following

two examples.

Example with even M: We will consider the
m= 13 and N= 104, the same

parameters as those used in the example of section 2.

case where M—4,

Follow ing the above design procedures, the near-PR
filter bank was obtained. The frequency responses of
o and E,
are also shown in the figure. E, and E, are respec-

the analysis filters are shown in Fig. 4. E

tively in the order of 10 *and 10 7, satisfying the
near-PR requirement. A, is 160. 12 dB. All the val-
ues are listed in Table 2.
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Normalized frequency (@ / 2m) Normalized frequency (@ / 2m) Normalized frequency (@ / 2m)
Fig. 4. A 4-channel nearPR CMFB. (a) Magnitude responses of the analysis filters; (b) aliasing error; (¢) amplitude distortion.
Table 2. Comparison between the odd/even M in nearPR Example with odd M: We also used the same

case (m=13, o =n/2M)

parameters as those in the second example of section

NLLI‘nberl()f A(dB) Re""’n“(ng’“)"n Aliasing error (E) 2, i.e. M=5, m=13, and N=130. Fig. 5 shows
channe’s orror 2\ w the frequency responses of the derived analysis filters.
M=4  160.12  3.094< 10 ° 6. 534X 107 The corresponding performance indexes are listed in
M=5 157.79  2.390X 10 ° 1. 248% 10 ° Table 2. In this example, A, is 157.79 dB.
X 107
20 12 1.0015
)
=S 40 = 1.0
= 60 2 — 1.0010
=] _ (5] 08 3
£ —1?)8 o E 10005
g -120 E = 10000
:D ~140 < 04 '
- —160 0.9995
_180 0.2
=200 0.9990
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Normalized frequency (@ / 2m) Normalized frequency (@ / 2m) Normalized frequency (@ / 2m)
Fig. 5. A 5channel nearPR CMFB. (a) Magnitude responses of the analysis filters; (b) alasing error; (¢) amplitude distortion.

It can be seen from Table 2 that in the case of
near-PR filter banks, there is no noticeable difference
in terms of the stopband attenuation of the filter
banks between even and odd M while maintaining

similar £, and E,. In other words, the selection of
even or odd number of channels has little effects on
the performance of the filter banks. Moreover, com-
pared with their PR counterparts, the stopband at-
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tenuation of the prototype filter for near-PR CM FBs
is much higher at the cost of sacrificing the PR prop-
erty. In addition, there is no constraint on the length
of the prototype filter in designing near-PR CM FBs
by using the proposed method. This is because there
are no PR constraints on the polyphase components of
the filter.

3.2 NearPR filter banks by using different design

approaches

Compared with the conventional method for de-
signing near-PR filter banks, where the nonlinear op-
timization is employed with relaxing the PR con-
straints the Parks-M cClellan algorithm with cosine
roll-off characteristic has some distinctive advantages.

For easy comparison, we will present an example by
using the conventional method.

Example with the constrained optimization: We
consider the same parameters used in the exam ple giv-
en in Section 3.1, where M=4, m=13, and N=
2mM=104. We can get a near-PR CMFB by relax-
ing the PR constraints in (6) while using the nonlin-
ear optimization as in (7). Fig. 6 shows the frequen-
cy responses of the analysis filters of this 4-channel
filter bank. E, and E, are also shown in the figure.

E,p and Eaare in the order of 10 *and 10 7, respec-

tively, satisfying the near-PR requirement. A is
about 107.55 dB. A Eyp and E,are listed in Table

X 107 X 107
2@ (b) [ ©
@ 20 5 1.0
S 40 é 4 —
g -60 5 T 05
£ =80 20 2
=) £ 3 2 0
140 % 2 S 05
= -160 1 -1.0
-180
-200 ) -1.5 .
0 01 02 03 04 05 0 0.1 02 03 04 05 0 01 02 03 04 05
Normalized frequency (@ / 2m) Normalized frequency (@ / 2m) Normalized frequency (@ / 2m)
Fig. 6. A 4 channel nearPR CMFB by using the constrained optimization. (a) Magnitude responses of the analysis filters; (b) aliasing

eror; (¢) amplitude distortion.

Table 3. Comparison between the constrained optimization
and the Parks-M cClellan algorithm with the same parameters
Design Reconstruction Aliasing
methods 4.(dB) error (E ) error (E,)
Nonlinear —107.55  2.15p< 10 *  5.728< 10 '
optlimization
(relaxed PR
constraints)
Parks McClellan 16012 3.094< 10 °  6.534x 10 °
algorithm

Comparing this example with the one in Section
3.1, it can be found that under the similar £, and

E » the stopband attenuation by using the Parks-M c-

Clellan algorithm is much higher (160. 12 dB versus
107.55 dB). For the constrained optimization, we
minimize the objective function in the least squares
sense as shown in (7), and therefore the prototype
filter is optimal in the least squares sense. Even if the
prototy pe filter is equiripple and optimal in the mini-
max sense after the nonlinear optimization, its stop-
band attenuation is not comparable with that obtained

by using the Parks-M cClellan algorithm. This is be-
cause the Parks- McClellan algorithm is an optimal
design in the minimax sense with respect to the speci-
fied ideal frequency response of the prototy pe filter.
Most importantly, however, the given examples have
shown that the Parks-M cClellan algorithm is very
simple and efficient .

4 Conclusion

In this paper, an issue of choosing even and odd
numbers of channels in designing PR CM FBs is iden-
tified. We pay particular attention to the analysis of
the effects of odd and even numbers of channels on
the performance of filter banks having PR or near-PR
property. Furthermore, in the near-PR case, the
comparison between the constrained optimization and
the Parks-McClellan algorithm with cosine toll-off
characteristic is made. By detailed analysis and nu-
merical comparisons, we concluded that the PR and
the near-PR systems have their individual characteris-
tics in terms of M and m_selection. 'The conclusions



1204 www. tandf. co. uk/ journals  Progress in Natural Science  Vol. 16 No. 11 2006

and recommendations made in this paper can provide
some useful and practical guidelines for choosing right

filter sy stems.
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